Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Chemistry ; : e202400308, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488326

RESUMO

Cyclic peptides are increasingly important structures in drugs but their development can be impeded by difficulties associated with their synthesis. Here, we introduce the 3-aminoazetidine (3-AAz) subunit as a new turn-inducing element for the efficient synthesis of small head-to-tail cyclic peptides. Greatly improved cyclizations of tetra-, penta- and hexapeptides (28 examples) under standard reaction conditions are achieved by introduction of this element within the linear peptide precursor. Post-cyclization deprotection of the amino acid side chains with strong acid is realized without degradation of the strained four-membered azetidine. A special feature of this chemistry is that further late-stage modification of the resultant macrocyclic peptides can be achieved via the 3-AAz unit. This is done by: (i) chemoselective deprotection and substitution at the azetidine nitrogen, or by (ii) a click-based approach employing a 2-propynyl carbamate on the azetidine nitrogen. In this way, a range of dye and biotin tagged macrocycles are readily produced. Structural insights gained by XRD analysis of a cyclic tetrapeptide indicate that the azetidine ring encourages access to the less stable, all-trans conformation. Moreover, introduction of a 3-AAz into a representative cyclohexapeptide improves stability towards proteases compared to the homodetic macrocycle.

2.
Mol Immunol ; 166: 16-28, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181455

RESUMO

Over 500 million people worldwide are affected by diabetes mellitus, a chronic disease that leads to high blood glucose levels and causes severe side effects. The predominant biological marker for diagnosis of diabetes is glycated haemoglobin (GHb). In human blood the predominant reducing sugar, glucose, irreversibly conjugates onto accessible amine groups within Hb. Most methods for diagnosis and monitoring of diabetes selectively detect N-terminal glycation at Val-1 on the ß-globin chain, but not glycation at other sites. Detection of other glycated epitopes of GHb has the potential to provide new information on the extent, duration and timing of elevated glucose, facilitating personalised diagnosis and intelligent diabetic control. In this work, a new anti-GHb Fab antibody (Fab-1) specific for haemoglobin A1c (HbA1c) with nanomolar affinity was discovered via epitope-directed immunisation and phage display. A single chain variable fragment (scFv) antibody derived from Fab-1 retained affinity and specificity for HbA1c, and affinity was enhanced tenfold upon addition of an enhanced green fluorescent protein tag. Both the scFv and Fab-1 recognised an epitope within HbA1c that was distinct from ß-Val-1, and our data suggest that this epitope may include glycation at Lys-66 in the ß-globin chain. To our knowledge, this is the first report of an scFv/Fab anti-glycated epitope antibody that recognises a non-A1c epitope in GHb, and confirms that fructosamine attached to different, discrete glycation sites within the same protein can be resolved from one another by immunoassay.


Assuntos
Diabetes Mellitus , Anticorpos de Cadeia Única , Oxibato de Sódio , Humanos , Hemoglobinas Glicadas , Epitopos , Glucose , Globinas beta
3.
Arch Biochem Biophys ; 752: 109856, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38104958

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-stranded RNA virus that sits at the centre of the recent global pandemic. As a member of the coronaviridae family of viruses, it shares features such as a very large genome (>30 kb) that is replicated in a purpose-built replication organelle. Biogenesis of the replication organelle requires significant and concerted rearrangement of the endoplasmic reticulum membrane, a job that is carried out by a group of integral membrane non-structural proteins (NSP3, 4 and 6) expressed by the virus along with a host of viral replication enzymes and other factors that support transcription and replication. The primary sites for RNA replication within the replication organelle are double membrane vesicles (DMVs). The small size of DMVs requires generation of high membrane curvature, as well as stabilization of a double-membrane arrangement, but the mechanisms that underlie DMV formation remain elusive. In this review, we discuss recent breakthroughs in our understanding of the molecular basis for membrane rearrangements by coronaviruses. We incorporate established models of NSP3-4 protein-protein interactions to drive double membrane formation, and recent data highlighting the roles of lipid composition and host factor proteins (e.g. reticulons) that influence membrane curvature, to propose a revised model for DMV formation in SARS-CoV-2.


Assuntos
Retículo Endoplasmático , Proteínas não Estruturais Virais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Replicação Viral
4.
J Biol Chem ; 299(7): 104869, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37247758

RESUMO

MHC class II molecules function to present exogenous antigen-derived peptides to CD4 T cells to both drive T cell activation and to provide signals back into the class II antigen-presenting cell. Previous work established the presence of multiple GxxxG dimerization motifs within the transmembrane domains of MHC class II α and ß chains across a wide range of species and revealed a role for differential GxxxG motif pairing in the formation of two discrete mouse class II conformers with distinct functional properties (i.e., M1-and M2-paired I-Ak class II). Biochemical and mutagenesis studies detailed herein extend this model to human class II by identifying an anti-HLA-DR mAb (Tü36) that selectively binds M1-paired HLA-DR molecules. Analysis of the HLA-DR allele reactivity of the Tü36 mAb helped define other HLA-DR residues involved in mAb binding. In silico modeling of both TM domain interactions and whole protein structure is consistent with the outcome of biochemical/mutagenesis studies and provides insight into the possible structural differences between the two HLA-DR conformers. Cholesterol depletion studies indicate a role for cholesterol-rich membrane domains in the formation/maintenance of Tü36 mAb reactive DR molecules. Finally, phylogenetic analysis of the amino acid sequences of Tü36-reactive HLA-DR ß chains reveals a unique pattern of both Tü36 mAb reactivity and key amino acid polymorphisms. In total, these studies bring the paradigm M1/M2-paired MHC class II molecules to the human HLA-DR molecule and suggest that the functional differences between these conformers defined in mouse class II extend to the human immune system.


Assuntos
Motivos de Aminoácidos , Antígenos HLA-DR , Antígenos de Histocompatibilidade Classe II , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos/metabolismo , Dimerização , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Filogenia , Motivos de Aminoácidos/fisiologia
5.
J Biol Chem ; 298(5): 101843, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35307351

RESUMO

The B-cell receptor (BCR), a complex comprised of a membrane-associated immunoglobulin and the Igα/ß heterodimer, is one of the most important immune receptors in humans and controls B-cell development, activity, selection, and death. BCR signaling plays key roles in autoimmune diseases and lymphoproliferative disorders, yet, despite the clinical significance of this protein complex, key regions (i.e., the transmembrane domains) have yet to be structurally characterized. The mechanism for BCR signaling also remains unclear and has been variously described by the mutually exclusive cross-linking and dissociation activation models. Common to these models is the significance of local plasma membrane composition, which implies that interactions between BCR transmembrane domains (TMDs) play a role in receptor functionality. Here we used an in vivo assay of TMD oligomerization called GALLEX alongside spectroscopic and computational methods to characterize the structures and interactions of human Igα and Igß TMDs in detergent micelles and natural membranes. We observed weak self-association of the Igß TMD and strong self-association of the Igα TMD, which scanning mutagenesis revealed was entirely stabilized by an E-X10-P motif. We also demonstrated strong heterotypic interactions between the Igα and Igß TMDs both in vitro and in vivo, which scanning mutagenesis and computational models suggest is multiconfigurational but can accommodate distinct interaction sites for self-interactions and heterotypic interactions of the Igα TMD. Taken together, these results demonstrate that the TMDs of the human BCR are sites of strong protein-protein interactions that may direct BCR assembly, endoplasmic reticulum retention, and immune signaling.


Assuntos
Receptores de Antígenos de Linfócitos B , Membrana Celular/genética , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Domínios Proteicos , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
6.
Phys Chem Chem Phys ; 24(11): 6476-6491, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35254357

RESUMO

Cellular damage is a key issue in the context of cryopreservation. Much of this damage is believed to be caused by extracellular ice formation at temperatures well above the homogeneous freezing point of pure water. Hence the question: what initiates ice nucleation during cryopreservation? In this paper, we assess whether cellular membranes could be responsible for facilitating the ice nucleation process, and what characteristics would make them good or bad ice nucleating agents. By means of molecular dynamics simulations, we investigate a number of phospholipids and lipopolysaccharide bilayers at the interface with supercooled liquid water. While these systems certainly appear to act as ice nucleating agents, it is likely that other impurities might also play a role in initiating extracellular ice nucleation. Furthermore, we elucidate the factors which affect a bilayer's ability to act as an ice nucleating agent; these are complex, with specific reference to both chemical and structural factors. These findings represent a first attempt to pinpoint the origin of extracellular ice nucleation, with important implications for the cryopreservation process.


Assuntos
Criopreservação , Gelo , Bicamadas Lipídicas , Congelamento , Simulação de Dinâmica Molecular , Água/química
7.
Chembiochem ; 22(14): 2430-2439, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34028161

RESUMO

Antibiotic resistance is a significant threat to human health, with natural products remaining the best source for new antimicrobial compounds. Antimicrobial peptides (AMPs) are natural products with great potential for clinical use as they are small, amenable to customization, and show broad-spectrum activities. Lynronne-1 is a promising AMP identified in the rumen microbiome that shows broad-spectrum activity against pathogens such as methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii. Here we investigated the structure of Lynronne-1 using solution NMR spectroscopy and identified a 13-residue amphipathic helix containing all six cationic residues. We used biophysical approaches to observe folding, membrane partitioning and membrane lysis selective to the presence of anionic lipids. We translated our understanding of Lynronne-1 structure to design peptides which varied in the size of their hydrophobic helical face. These peptides displayed the predicted continuum of membrane-lysis activities in vitro and in vivo, and yielded a new AMP with 4-fold improved activity against A. baumannii and 32-fold improved activity against S. aureus.


Assuntos
Peptídeos Antimicrobianos
8.
Sci Rep ; 11(1): 6326, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737685

RESUMO

The reticulon family of integral membrane proteins are conserved across all eukaryotes and typically localize to the endoplasmic reticulum (ER), where they are involved in generating highly-curved tubules. We recently demonstrated that Reticulon-like protein B13 (RTNLB13) from Arabidopsis thaliana contains a curvature-responsive amphipathic helix (APH) important for the proteins' ability to induce curvature in the ER membrane, but incapable of generating curvature by itself. We suggested it acts as a feedback element, only folding/binding once a sufficient degree of curvature has been achieved, and stabilizes curvature without disrupting the bilayer. However, it remains unclear whether this is unique to RTNLB13 or is conserved across all reticulons-to date, experimental evidence has only been reported for two reticulons. Here we used biophysical methods to characterize a minimal library of putative APH peptides from across the 21 A. thaliana isoforms. We found that reticulons with the closest evolutionary relationship to RTNLB13 contain curvature-sensing APHs in the same location with sequence conservation. Our data reveal that a more distantly-related branch of reticulons developed a ~ 20-residue linker between the transmembrane domain and APH. This may facilitate functional flexibility as previous studies have linked these isoforms not only to ER remodeling but other cellular activities.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Arabidopsis/crescimento & desenvolvimento , Fenômenos Biofísicos/genética , Sequência Conservada/genética , Membranas Intracelulares/metabolismo , Domínios Proteicos/genética , Isoformas de Proteínas/genética , /genética
9.
Phys Chem Chem Phys ; 22(43): 25075-25083, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33118559

RESUMO

Peptide-based drugs combine advantages of larger biological therapeutics with those of small molecule drugs, but they generally display poor permeability and metabolic stability. Recently, we introduced a new type of peptide bond isostere, in which the backbone carbonyl is replaced with a 3-amino oxetane heterocycle, into short linear peptides with the aim of improving their therapeutic potential. In this study, we have explored the impact of oxetane modification on α-helical peptides to establish whether or not this modification is tolerated in this biologically important structural motif. The oxetane modification was introduced at two positions in a well-characterised helical peptide sequence, and circular dichroism and NMR spectroscopy were used to measure the resulting secondary structure content under different experimental conditions. Our data demonstrated that introduction of an oxetane into the peptide backbone results in a significant loss of helicity, regardless of where in the sequence the modification is placed. The molecular determinants of this destabilisation were then explored using steered molecular dynamics simulations, a computational method analogous to single molecule spectroscopy. Our simulations indicated that oxetane modification introduces a kink in the helical axis, alters the dihedral angles of residues up to three positions away from the modification, and disrupts the (i, i + 4) hydrogen bonding pattern characteristic of α-helices in favour of new, short-range hydrogen bonds. The detailed structural understanding provided in this work can direct future design of chemically modified peptides.


Assuntos
Éteres Cíclicos/química , Éteres Cíclicos/metabolismo , Peptídeos/química , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Estrutura Secundária de Proteína
10.
Sci Rep ; 10(1): 5727, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235931

RESUMO

The glycopeptide antibiotic vancomycin has been widely used to treat infections of Gram-positive bacteria including Clostridium difficile and methicillin-resistant Staphylococcus aureus. However, since its introduction, high level vancomycin resistance has emerged. The genes responsible require the action of the two-component regulatory system VanSR to induce expression of resistance genes. The mechanism of detection of vancomycin by this two-component system has yet to be elucidated. Diverging evidence in the literature supports activation models in which the VanS protein binds either vancomycin, or Lipid II, to induce resistance. Here we investigated the interaction between vancomycin and VanS from Streptomyces coelicolor (VanSSC), a model Actinomycete. We demonstrate a direct interaction between vancomycin and purified VanSSC, and traced these interactions to the extracellular region of the protein, which we reveal adopts a predominantly α-helical conformation. The VanSSC-binding epitope within vancomycin was mapped to the N-terminus of the peptide chain, distinct from the binding site for Lipid II. In targeting a separate site on vancomycin, the effective VanS ligand concentration includes both free and lipid-bound molecules, facilitating VanS activation. This is the first molecular description of the VanS binding site within vancomycin, and could direct engineering of future therapeutics.


Assuntos
Proteínas de Bactérias/metabolismo , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/metabolismo , Resistência a Vancomicina/genética , Vancomicina/farmacologia , Proteínas de Bactérias/genética , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor/efeitos dos fármacos , Streptomyces coelicolor/genética , Fatores de Transcrição/genética
11.
Biochim Biophys Acta Biomembr ; 1862(3): 183160, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31874147

RESUMO

Membrane curvature sensing via helical protein domains, such as those identified in Amphiphysin and ArfGAP1, have been linked to a diverse range of cellular processes. However, these regions can vary significantly between different protein families and thus remain challenging to identify from sequence alone. Greater insight into the protein-lipid interactions that drive this behavior could lead to production of therapeutics that specifically target highly curved membranes. Here we demonstrate the curvature-dependence of membrane binding for an amphipathic helix (APH) in a plant reticulon, namely RTNLB13 from A. thaliana. We utilize solution-state nuclear magnetic resonance spectroscopy to establish the exact location of the APH and map the residues involved in protein-membrane interactions at atomic resolution. We find that the hydrophobic residues making up the membrane binding site are conserved throughout all A. thaliana reticulons. Our results also provide mechanistic insight that leads us to propose that membrane binding by this APH may act as a feedback element, only forming when ER tubules reach a critical size and adding stabilization to these structures without disrupting the bilayer. A shallow hydrophobic binding interface appears to be a feature shared more broadly across helical curvature sensors and would automatically restrict the penetration depth of these structures into the membrane. We also suggest this APH is highly tuned to the composition of the membrane in which it resides, and that this property may be universal in curvature sensors thus rationalizing the variety of mechanisms reported for these functional elements.


Assuntos
Retículo Endoplasmático/metabolismo , Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fenômenos Biofísicos , Membrana Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/análise , Lipossomos/química , Domínios Proteicos , Dobramento de Proteína
12.
J Membr Biol ; 252(4-5): 357-369, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31222471

RESUMO

The activation mechanism of the ErbB family of receptors is of considerable medical interest as they are linked to a number of human cancers, including an aggressive form of breast cancer. In the rat analogue of the human ErbB2 receptor, referred to as Neu, a point mutation in the transmembrane domain (V664E) has been shown to trigger oncogenic transformation. While the structural impact of this mutation has been widely studied in the past to yield models for the active state of the Neu receptor, little is known about the impact of cholesterol on its structure. Given previous reports of the influence of cholesterol on other receptor tyrosine kinases (RTKs), as well as the modulation of lipid composition in cancer cells, we wished to investigate how cholesterol content impacts the structure of the Neu transmembrane domain. We utilized high-resolution magic angle spinning solid-state NMR to measure 13C-13C coupling of selectively labelled probe residues in the Neu transmembrane domain in lipid bilayers containing cholesterol. We observe inter-helical coupling between residues that support helix-helix interactions on both dimerization motifs reported in the literature (A661-XXX-G665 and I659-XXX-V663). We further explore how changes in cholesterol concentration alter transmembrane domain interactions and the properties and mechanics of the bilayer. We interpret our results in light of previous studies relating RTK activity to cholesterol enrichment and/or depletion, and propose a novel model to explain our data that includes the recognition and binding of cholesterol by the Neu transmembrane domain through a putative cholesterol-recognition/interaction amino acid consensus sequence.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Fluidez de Membrana , Receptor ErbB-2/química , Colesterol/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Receptor ErbB-2/metabolismo
13.
Chem Sci ; 10(8): 2465-2472, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30881675

RESUMO

Cyclic peptides are an important source of new drugs but are challenging to produce synthetically. We show that head-to-tail peptide macrocyclisations are greatly improved, as measured by isolated yields, reaction rates and product distribution, by substitution of one of the backbone amide C[double bond, length as m-dash]O bonds with an oxetane ring. The cyclisation precursors are easily made by standard solution- or solid-phase peptide synthesis techniques. Macrocyclisations across a range of challenging ring sizes (tetra-, penta- and hexapeptides) are enabled by incorporation of this turn-inducing element. Oxetane incorporation is shown to be superior to other established amino acid modifications such as N-methylation. The positional dependence of the modification on cyclisation efficiency is mapped using a cyclic peptide of sequence LAGAY. We provide the first direct experimental evidence that oxetane modification induces a turn in linear peptide backbones, through the observation of d NN (i, i + 2) and d αN (i, i + 2) NOEs, which offers an explanation for these improvements. For cyclic peptide, cLAGAY, a combination of NMR derived distance restraints and molecular dynamics simulations are used to show that this modification alters the backbone conformation in proximity to the oxetane, with the flexibility of the ring reduced and a new intramolecular H-bond established. Finally, we incorporated an oxetane into a cyclic pentapeptide inhibitor of Aminopeptidase N, a transmembrane metalloprotease overexpressed on the surface of cancer cells. The inhibitor, cCNGRC, displayed similar IC50 values in the presence or absence of an oxetane at the glycine residue, indicating that bioactivity is fully retained upon amide C[double bond, length as m-dash]O bond replacement.

14.
Hum Immunol ; 80(1): 5-14, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30102939

RESUMO

Class II Major Histocompatibility complex (MHC-II) is a polymorphic heterodimer that binds antigen-derived peptides and presents them on the surface of antigen presenting cells. This mechanism of antigen presentation leads to recognition by CD4 T-cells and T-cell activation, making it a critical element of adaptive immune response. For this reason, the structural determinants of MHC-II function have been of great interest for the past 30 years, resulting in a robust structural understanding of the extracellular regions of the complex. However, the membrane-localized regions have also been strongly implicated in protein-protein and protein-lipid interactions that facilitate Class II assembly, transport and function, and it is these regions that are the focus of this review. Here we describe studies that reveal the strong and selective interactions between the transmembrane domains of the MHC α, and invariant chains which, when altered, have broad reaching impacts on antigen presentation and Class II function. We also summarize work that clearly demonstrates the link between membrane lipid composition (particularly the presence of cholesterol) and MHC-II conformation, subsequent peptide binding, and downstream T-cell activation. We have integrated these studies into a comprehensive view of Class II transmembrane domain biology.


Assuntos
Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos/imunologia , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Modelos Animais de Doenças , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Ativação Linfocitária/imunologia , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Linfócitos T/imunologia , Linfócitos T/metabolismo
15.
Chembiochem ; 19(18): 1959-1968, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-29968955

RESUMO

The enzyme carboxypeptidase G2 (CPG2) is used in antibody-directed enzyme prodrug therapy (ADEPT) to catalyse the formation of an active drug from an inert prodrug. Free CPG2 in the bloodstream must be inhibited before administration of the prodrug in order to avoid a systemic reaction in the patient. Although a few small-molecule CPG2 inhibitors have been reported, none has been taken forward thus far. This lack of progress is due in part to a lack of structural understanding of the CPG2 active site as well as the absence of small molecules that can block the active site whilst targeting the complex for clearance. The work described here aimed to address both areas. We report the structural/functional impact of extensive point mutation across the putative CPG2 catalytic site and adjacent regions for the first time, revealing that residues outside the catalytic region (K208A, S210A and T357A) are crucial to enzyme activity. We also describe novel molecules that inhibit CPG2 whilst maintaining the accessibility of galactosylated moieties aimed at targeting the enzyme for clearance. This work acts as a platform for the future development of high-affinity CPG2 inhibitors that occupy new chemical space and will advance the safe application of ADEPT in cancer treatment.


Assuntos
Domínio Catalítico/efeitos dos fármacos , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , gama-Glutamil Hidrolase/antagonistas & inibidores , gama-Glutamil Hidrolase/metabolismo , Descoberta de Drogas , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , gama-Glutamil Hidrolase/química
16.
Protein Expr Purif ; 152: 31-39, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29969670

RESUMO

Reticulons are a large family of integral membrane proteins that are ubiquitous in eukaryotes and play a key role in functional remodelling of the endoplasmic reticulum membrane. The reticulon family is especially large in plants, with the Arabidopsis thaliana genome containing twenty-one isoforms. Reticulons vary in length but all contain a conserved C-terminal reticulon homology domain (RHD) that associates with membranes. An understanding of the structure and membrane interactions of RHDs is key to unlocking their mechanism of function, however no three-dimensional structure has been solved. We believe that this is, in part, due to difficulties in obtaining reticulon proteins in yields sufficient for structural study. To address this, we report here the first bacterial overexpression, purification, and biophysical investigation of a reticulon protein from plants, the RTNLB13 protein from A. thaliana. RTNLB13 is the smallest plant reticulon and is made up of a single RHD. We used circular dichroism, SDS-PAGE and analytical ultracentrifugation to reveal that RTNLB13 is 45% α-helical in a number of detergent environments, monomeric at low concentrations, and capable of self-association at higher concentrations. We used solution-state NMR to screen the effect of detergent type on the fold of isotopically-enriched RTNLB13, and found that ∼60% of the expected protein peaks were broadened due to slow dynamics. This broadening points toward a large network of protein-membrane interactions throughout the sequence. We have interpreted our results in light of current literature and suggest a preliminary description of RTNLB13 structure and topology.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Membrana/química , Proteínas Recombinantes de Fusão/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Cromatografia em Gel/métodos , Clonagem Molecular , Detergentes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histidina/genética , Histidina/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Micelas , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
17.
Proc Natl Acad Sci U S A ; 113(39): 10902-7, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27621477

RESUMO

Reticulons (RTNs) are a class of endoplasmic reticulum (ER) membrane proteins that are capable of maintaining high membrane curvature, thus helping shape the ER membrane into tubules. The mechanism of action of RTNs is hypothesized to be a combination of wedging, resulting from the transmembrane topology of their conserved reticulon homology domain, and scaffolding, arising from the ability of RTNs to form low-mobility homo-oligomers within the membrane. We studied the plant RTN isoform RTN13, which has previously been shown to locate to ER tubules and the edges of ER cisternae and to induce constrictions in ER tubules when overexpressed, and identified a region in the C terminus containing a putative amphipathic helix (APH). Here we show that deletion of this region or disruption of the hydrophobic face of the predicted helix abolishes the ability of RTN13 to induce constrictions of ER tubules in vivo. These mutants, however, still retain their ability to interact and form low-mobility oligomers in the ER membrane. Hence, our evidence indicates that the conserved APH is a key structural feature for RTN13 function in vivo, and we propose that RTN, like other membrane morphogens, rely on APHs for their function.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Transferência Ressonante de Energia de Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Membranas Intracelulares/metabolismo , Mutação/genética , Epiderme Vegetal/citologia , Estrutura Secundária de Proteína , Deleção de Sequência , Relação Estrutura-Atividade , /citologia
18.
Protein Expr Purif ; 127: 44-52, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27374188

RESUMO

Due to its applications in the treatment of cancer and autoimmune diseases, the 42 kDa zinc-dependent metalloenzyme carboxypeptidase G2 (CPG2) is of great therapeutic interest. An X-ray crystal structure of unliganded CPG2 reported in 1997 revealed the domain architecture and informed early rational drug design efforts, however further efforts at co-crystallization of CPG2 with ligands, substrates or inhibitors have not been reported. Thus key features of CPG2 such as the location of the active site, the presence of additional ligand-binding sites, stability, oligomeric state, and the molecular basis of activity remain largely unknown, with the current working understanding of CPG2 activity based primarily on computational modelling. To facilitate renewed efforts in CPG2 structural biology, we report the first high-yield (250 mg L(-1)) recombinant expression (and purification) of soluble and active CPG2 using the Escherichia coli expression system. We used this protocol to produce full-length enzyme, as well as protein fragments corresponding to the individual catalytic and dimerization domains, and the activity and stability of each construct was characterised. We adapted our protocol to allow for uniform incorporation of NMR labels ((13)C, (15)N and (2)H) and present preliminary solution-state NMR spectra of high quality. Taken together, our results offer a route for production and solution-state characterization that supports renewed effort in CPG2 structural biology as well as design of significantly truncated CPG2 proteins, which retain activity while yielding (potentially) improved immunogenicity.


Assuntos
Proteínas de Bactérias , Escherichia coli/metabolismo , Expressão Gênica , Pseudomonas/genética , gama-Glutamil Hidrolase , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Escherichia coli/genética , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Pseudomonas/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , gama-Glutamil Hidrolase/biossíntese , gama-Glutamil Hidrolase/química , gama-Glutamil Hidrolase/genética , gama-Glutamil Hidrolase/isolamento & purificação
19.
Elife ; 4: e07485, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26609809

RESUMO

Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue, and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs, which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD-LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat.


Assuntos
Adipócitos Marrons/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Gotículas Lipídicas/metabolismo , Ácidos Fosfatídicos/metabolismo , Animais , Proteínas Reguladoras de Apoptose/química , Sítios de Ligação , Linhagem Celular , Camundongos , Ligação Proteica , Estrutura Secundária de Proteína
20.
Biochim Biophys Acta ; 1848(5): 1248-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25732028

RESUMO

Membrane proteins regulate a large number of cellular functions, and have great potential as tools for manipulation of biological systems. Developing these tools requires a robust and quantitative understanding of membrane protein folding and interactions within the bilayer. With this in mind, we have designed a series of proteins to probe the net thermodynamic contribution of well-known sequence motifs to transmembrane helix-helix association in a biological membrane. The proteins were designed from first principles (de novo) using current knowledge about membrane insertion and stabilizing interaction motifs. A simple poly-Leu "scaffold" was decorated with individual helix interaction motifs (G-XXX-G, polar residues, heptad repeat) to create transmembrane helix-helix interactions of increasing strength. The GALLEX assay, an in vivo assay for measurement of transmembrane helix self-association, was combined with computational methods to characterize the relative strength and mode of interaction for each sequence. In addition, the apparent free energy contribution (ΔΔGapp) of each motif to transmembrane helix self-association was measured in a biological membrane, results that are the first of their kind for these de novo designed sequences, and suggest that the free energy barrier to overcoming weak association is quite small (<1.4 kcal mol(-1)) in a natural membrane. By quantifying and rationalizing the contribution of key motifs to transmembrane helix association, our work offers a route to direct the design of novel sequences for use in biotechnology or synthetic biology (e.g. molecular switches) and to predict the effects of sequence modification in known transmembrane domains (for control of cellular processes).


Assuntos
Simulação por Computador , Desenho Assistido por Computador , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Motivos de Aminoácidos , Escherichia coli/química , Proteínas de Escherichia coli/química , Membranas Intracelulares/química , Proteínas de Membrana/química , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...